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It is shown that slow hydrodynamic flow with velocities of a few millimeters per second reduces the
spin-lattice relaxation rate of fluids confined to pores of a diamagnetic, polar, solid material. The effect is
predicted by an analytical theory and Monte Carlo simulations of model pore spaces. Adsorbate molecules
diffusing in the vicinity of pore surfaces can perform adsorption, desorption, and readsorption cycles, effec-
tively leading to displacements along the surface �also termed “bulk mediated surface diffusion” or BMSD�.
Since the surface determines the orientation of the adsorbed molecule relative to the external magnetic field,
desorption at one site and readsorption at another site of a nonplanar surface will cause molecular reorientation.
This is the basis of the “reorientation mediated by translational displacements” �RMTD� relaxation mechanism.
If hydrodynamic flow is superimposed on diffusion, the RMTD process will be accelerated in a sort of
rotational analog to translational hydrodynamic �or Taylor-Aris� dispersion. This reveals itself by a prolonga-
tion of spin-lattice relaxation times at low frequencies. The flow-relaxation effect takes place in the vicinity of
the pore surfaces on the order of nanometers. The conclusions are �i� the BMSD and RMTD relaxation
mechanism of fluids in porous materials is corroborated, �ii� hydrodynamic dispersion affects molecular dis-
placements at surfaces, and �iii� interfacial slip in the sense of a molecular hopping, i.e., a desorption-
readsorption process takes place.
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I. INTRODUCTION

The objective of this study is to examine the influence of
hydrodynamic flow on low-frequency spin-lattice relaxation
in fluids confined in microporous media analytically and nu-
merically. The envisaged frequency and time scales are 103

���108 Hz and 10−9� t�10−4 s, respectively, correspond-
ing to field-cycling NMR relaxometry �1�. Following our
previous report �2�, the motivation to do so has three aspects.

First, this sort of study is suitable to elucidate the low-
field spin-lattice relaxation mechanism for strong adsorbate
fluids in porous media suggested in Refs. �3,4�. Dipolar and
quadrupolar orientation correlation times up to seven orders
of magnitude longer than in the bulk fluid were observed in
nanoporous materials. The explanation was the so-called re-
orientation mediated by translational displacements �RMTD�
process. Adsorbate molecules are subject to frequent
adsorption-desorption-readsorption cycles at the pore walls
�5�. Bulk mediated surface diffusion �BMSD� produces
Lévy-walk-like displacements along the pore surface �5–8�,
which explain how the adsorbate molecules probe the sur-
face topology with respect to the orientation relative to the
main magnetic field �4,9,10�. Under such conditions hydro-
dynamic flow superimposed on surface diffusion is expected
to accelerate the RMTD process �see Fig. 1�.

Second, hydrodynamic �or Taylor-Aris� dispersion
�11,12�, that is, the superposition of incoherent Brownian
particle motions and coherent flow, is of general interest
�13–18�. In the vicinity of surfaces the question arises
whether interfacial slip exists. Since we are dealing with a
surface relaxation process, a detailed examination of the
valid flow boundary condition is possible.

Finally, field-cycling NMR relaxometry �1� probes mo-
lecular mechanisms on a time scale up to 10−4 s. That is,

molecular root mean square displacements by Brownian mo-
tions are much less than 100 nm in water at room tempera-
ture. Flow can therefore influence surface relaxation only in
a surface layer thinner than 100 nm. In a sense, nanofluidics
can be examined on this basis.

The flow and relaxation scenario considered here is illus-
trated in Fig. 1. The model refers to a liquid in the pore space
of a porous medium. We distinguish the phase of molecules
adsorbed at the surface from the bulklike phase. On the time
scale of the proton spin-lattice relaxation times, which is for
field-cycling relaxometry typically 10 ms�T1�1 s, fast
molecular exchange between the two phases occurs. Hydro-
dynamic flow is assumed to be superimposed on Brownian
motion of the molecules. In case the liquid molecules and the
pore surfaces are both polar, molecules in the vicinity of the
surfaces will be subject to adsorption and desorption kinetics
including possible readsorption cycles. The reorientation of
molecules that happen to be adsorbed initially as well as
finally will thus depend on displacements and readsorption at
a more or less distant surface site of a different orientation.
These displacements are the combined result of Brownian
motions and laminar flow, that is, hydrodynamic dispersion.

The hydrodynamic dispersion properties are usually char-
acterized by the Péclet number defined by

Pe =
f�

wDm
, �1�

where � is the correlation length of the pore space, f is the
hydrodynamic flux, Dm is the molecular diffusion constant in
the bulk, and w is the pore width. In the following the Péclet
number will be taken as a measure of the mean flow velocity
relative to Brownian diffusion.
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Following the bulk mediated surface diffusion formalism
of Bychuk and O’Shaughnessy �5,6� different adsorption and
desorption probabilities per time unit, Qads and Qdes, respec-
tively, can be distinguished. The adsorption on surfaces can
be characterized by a number of characteristic parameters.
The retention time th reflects how long it takes until the ini-
tial adsorbate population on a surface is finally replaced by
molecules initially in the bulklike phase. The retention time
is related to the so-called adsorption depth h according to

th =
h2

Dm
. �2�

On the other hand, the adsorption length can be expressed by

h = �
Qads

Qdes
, �3�

where � is the “capture range” within which a molecule can
directly be adsorbed on the surface. This equation is based
on a dynamic equilibrium of the one-dimensional “reaction-
diffusion” process as which adsorption and translational dif-
fusion to and from the surface can be interpreted. The time
scale of desorption-diffusion-readsorption cycles is given by
Qdes

−1 � t� th, and was shown to be of the same order of mag-
nitude as the time scale probed by field-cycling NMR relax-
ometry �1,4�.

The weak-adsorption limit is characterized by

thQdes � 1. �4�

That is, the adsorbate molecules are most likely exchanged
to the bulklike phase immediately after desorption. This is in
contrast to the strong-adsorption limit

thQdes � 1, �5�

in which numerous desorption-readsorption cycles occur be-
fore an adsorbate molecule finally disappears in the bulklike
phase. This strong-adsorption limit must be assumed for a
combination of polar adsorbate molecules and polar surfaces
�3,4�. In the present study we are dealing with this case.

In Sec. II a general analytical formalism will be outlined
for the flow-relaxation effect in terms of the dipolar autocor-
relation function and spectral density. Representing the pore
space by a number of simplified model structures permits
one to examine the principal properties of this effect with the
aid of Monte Carlo simulations as described in Sec. III. The
results of analytical model treatments specific for those
model structures will be compared and fitted to the evalua-
tions of the simulations. Finally we will discuss the intrica-
cies of experimental verifications of the flow-relaxation
effect.

II. GENERAL THEORY OF THE FLOW-NMR-
RELAXATION EFFECT

The spin-lattice relaxation rate of a two-spin-1 /2 system
ensemble of like nuclei subject to dipolar coupling is given
by �19,20�

1

T1
= K�I��� + 4I�2��� , �6�

where K is a constant determined by the type and strength of
the spin interaction. The spectral density �or intensity func-
tion� I��� depends on the resonance angular frequency �
=�B0, where � is the gyromagnetic ratio and B0 is the flux
density of the main magnetic field. The spectral density is the

FIG. 1. �Color online� Illustration of the flow-relaxation effect
and adsorbate reorientation by hydrodynamic dispersion. A liquid is
pressed through a porous sample �top part of the figure�. The liquid
flows along the pore surfaces �bottom part of the figure�. The dotted
line represents a trajectory of a molecule by Brownian motion in the
presence of laminar flow along the surface. Flow streamlines are
drawn as broken lines. The adsorption layer on the solid matrix is
indicated. The arrows refer to the local preferential orientations of
molecules at the initial and final pore surface sites. The thickness of
the fluid layer along the surface in which the flow enhanced RMTD
process is expected to take place ranges from molecular diameters
up to about 100 nm.

FIG. 2. The diverse geometries of two-dimensional pore spaces
used for the Monte Carlo simulations. The pores are represented in
white. �a� Circular pore. Random-walk-shaped pipes with �b�
smooth and �c� rough surfaces. �d� Ellipsoidal-grain pack. �e� Map
of the magnitudes of the flow velocity simulated with the finite
volume method for the ellipsoidal-grain pack. The velocity field
obtained in this way was used for the Monte Carlo simulations of
the flow-relaxation effect described in Sec. IV B 3.
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Fourier transform of the autocorrelation function G�t�. For
intramolecular dipolar interaction �which is relevant here
�3,4��, G�t� refers to spherical harmonics of second order
characterizing the orientation of the two-spin system relative
to the main magnetic field. That is, spin-lattice relaxation
probes molecular reorientations.

Spin-lattice relaxation in porous media at frequencies
much less than the bulk reorentation rates of the molecules
was shown to be governed by the RMTD mechanism at the
pore surfaces �4,9,20�. The problem is now to generalize this
formalism for superimposed hydrodynamic flow, i.e., hydro-
dynamic dispersion.

The curvilinear coordinate along a streamline along the
surface will be defined as x �see Fig. 1�. Descriptions of
hydrodynamic dispersion in bulk fluids can be found in Refs.
�21–24�. For scalar fields and incompressible fluids, the
convective-diffusion equation applies:

�	

�t
+ V� · �� = D̃ · �2� . �7�

The function 	 is the propagator, V� is the average over the

local velocities v� , and D̃ is the dispersion tensor. In the case
of macroscopically homogeneous and isotropic porous me-

dia, D̃ can be decomposed into the components D� and D�

orthogonal and parallel to the flow velocity V� , respectively.
The convective-diffusion equation then becomes

�	

�t
+ V� · �� = D���

2 � + D�

�2�

�x2 , �8�

where ��
2 is the Laplace operator in the transverse direction.

The dispersion coefficients D� and D� depend on the flow
velocity, of course. In the limit of vanishing flow velocities,
D� becomes equal to the molecular diffusion coefficient �Dm�
diminished by the tortuosity factor.

In the present context, only the longitudinal version of
hydrodynamic dispersion is of interest, that is, the projection
of Eq. �8� on the x direction. In this case, D=D� can be
equated. After Fourier transformation the solution is


�k,t� = 
̂�k�e−Dtk2
e−ikvt, �9�

where 
̂�k� is the Fourier transform of 	�x ,0� and v is the
velocity component in longitudinal direction. The “wave
number” k is the reciprocal-space variable conjugate to the
real-space variable x. With the initial condition 	�x ,0�
=c0��x� the conjugate Fourier expression reads

	�x,t� =
c0

2�
�

−

+

e−�Dtk2+ikvt�eixkdk . �10�

Note that the Gaussian term in the propagator given in Eq.
�9� or Eq. �10� anticipates ordinary diffusion. There is some
argument based on the BMSD model by Bychuk and
O’Shaughnessy �5,6,8� that features of Lévy walks along the
surface are relevant so that a Cauchy propagator would be
more appropriate �3,4,25�. For simplicity we will restrict our-
selves in the analytical treatment to the ordinary diffusion
case. The objective of the present study is to reveal the in-

fluence of coherent flow on spin-lattice relaxation whereas
the type of diffusion process is considered to be of minor
importance in this context. The Monte Carlo simulations
should anyway reflect the actual propagators, of course.

The autocorrelation function describing orientational fluc-
tuations of molecules with fixed intramolecular interdipole
distances can be expressed by �19,20�

G�t� = 4��Y2,m�u� i�Y2,−m�u� f��u� i,u� f

=� �Pc�u� i,u� f,t�Y2,m�u� i��u� i
Y2,−m�u� f�d� f , �11�

where the angular brackets indicate ensemble averages. u� i
and u� f are unit vectors normal to the surface indicating the
initial and the final orientations of the molecule under con-
sideration �see Fig. 1�. d� f is the differential solid angle into
which u� f points. In the usual spin-lattice relaxation theory of
dipolar coupled like spins subscripts m=1 and 2 occur
�19,20�. However, no distinction will be made in the follow-
ing since this causes only minor differences in the results. In
the Monte Carlo simulations even the value m=0 will be
used for simplicity without loss of validity of the principle
�26�.

The conditional probability density can be expressed as

Pc�u� i,u� f,t� = �
−



��u� i,u� f,x�	�x,t�dx , �12�

where 	�x , t� is the surface diffusion propagator, i.e., the
probability density that the adsorbate molecule is displaced
by a curvilinear distance x along the surface in an interval t,
and ��u� i ,u� f ,x� is the probability that the surface orientation
changes from u� i to u� f in a curvilinear distance x.

Using the expansion in terms of spherical harmonics with
the initial condition ��u� i ,u� f ,0�=��u� f −u� i� the surface orien-
tation probability density becomes

��u� i,u� f,x� = 	
l�,m�

Yl�,−m��u� i�Yl�,m��u� f�g�x� , �13�

where g�x� is the normalized surface orientation correlation
function between surface sites separated by a curvilinear dis-
tance x. “Normalized” means that g�x=0�=1. The combina-
tion of Eqs. �11�–�13�, and making use of the orthonormal
properties of spherical harmonics, leads to

G�t� = �
−



g�x�	�x,t�dx . �14�

Inserting the propagator given in Eq. �10� in Eq. �14�
leads to

G�t� = �
−

+

g�x�
 c0

2�
�

−

+

e−�Dtk2+ikvt�eikxdk�dx . �15�

Regrouping the factors that depend only on the space vari-
able x results in the orientational structure factor
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S�k� =
c0

2�
�

−

+

g�x�eikxdx . �16�

The autocorrelation function given in Eq. �11� can thus be
rewritten as

G�t� = �
−

+

S�k�e−�Dtk2+ikvt�dk . �17�

A typical application of this general formula to the case of a
simple circular pore is given in Eq. �27�. Treatments of other
pore-space structures will follow.

The Fourier transform of Eq. �17� is the corresponding
spectral density. Its real part reads

I��� = �
−

+

S�k�
2Dk2

�Dk2�2 + �kv + ��2dk . �18�

Up to now a given flow velocity v was assumed. In reality
one expects a distribution of flow velocities, P�v�. Averaging
the above expression on this basis leads to

I��� = �
vmin

vmax

P�v��
−

+

S�k�
2Dk2

�Dk2�2 + �kv + ��2dk dv ,

�19�

where vmin and vmax indicate the velocity range. Combining
this expression for the spectral density with Eq. �6� provides
a velocity dependent spin-lattice rate. The influence of flow
velocity on spin-lattice relaxation will be called the flow-
relaxation effect.

III. DETAILED THEORY FOR THE MONTE CARLO
SIMULATIONS

A. Definitions

The flow-relaxation effect predicted by Eq. �19� was fur-
ther examined with the aid of Monte Carlo simulations for a

number of simple model structures �see Fig. 2�. For the sake
of simplicity we restrict ourselves to two-dimensional repre-
sentations of pores and grain packs. The sole objective of
this model treatment is to reveal the relationship between the
pore-space structure and the resulting flow-relaxation effect
in systems of tractable complexity.

The simulations selectively refer to molecules contribut-
ing to the initial surface population. Molecules being initially
adsorbed can be subject to three different dynamic evolutions
during the time interval to which the autocorrelation function
refers. �i� They remain �and possibly diffuse translationally�
within the adsorption layer so that they are finally still ad-
sorbed. �ii� They get exchanged with molecules that were
initially in the bulklike phase but get readsorbed somewhere
on the surface so that they are finally in the adsorbed phase
again. �iii� They get exchanged with molecules that were
initially in the bulklike phase and reside there finally.

Since the bulklike phase is characterized by rapid rota-
tional diffusion, only the first two cases can retain orienta-
tional correlation. We attribute the correlation function
Greo�t� to molecules being subject to these two types of dy-
namic evolution.

On the other hand, initially adsorbed molecules being
subject to case �iii� cannot retain any correlated orientations.
One may speak of “exchange losses” and attribute a correla-
tion function Gex�t� to this sort of correlation decay.

These two classes of correlation functions are stochasti-
cally independent from each other since both can be consid-
ered as the result of a large number of random elementary
processes and diffusion steps. The total correlation function
expected to be relevant for experiments can then be written
as a product in the form

GT�t� = Gex�t�Greo�t� . �20�

The displacement of particles is mimicked by Monte
Carlo generated random walks of fixed step length � and a
superimposed velocity field representing laminar flow. The
starting position is chosen at random on the surface. In the

FIG. 3. �Color online� Typical reorientation autocorrelation functions in the absence of flow. �a� Simulation for the two-dimensional
circular pore with smooth surfaces schematically shown in the inset. The reorientation and exchange time scales are different enough to
identify two corresponding steps in the decay of the total correlation function GT. The step at short times is obviously due to �velocity
independent� exchange losses as demonstrated by the function Gex. The second step at long times must be attributed to the �velocity
dependent� reorientational part Greo=GT /Gex. �b� Simulation for the two-dimensional random-walk-shaped pore with rough surfaces sche-
matically shown in the inset. In this case, the two time scales overlap, so that the two sorts of losses do not appear as separate steps in the
decay of the total correlation function. The two plots visualize the different behavior for smooth and rough surface topologies. Qualitatively
the same tendencies are observed for any of the pore-space geometries shown in Fig. 2.
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channel-like pore structures �Figs. 2�a�–2�c��, a parabolic ve-
locity profile about the channel axis was assumed. The ve-
locity field taken for the ellipsoidal-grain pack model �Fig.
2�d�� was simulated with the aid of a computational fluid
dynamics technique �software package FLUENT 5.5 based on
the finite volume method�. The result is represented in Fig.
2�e�.

The flux f is given by the integral of the flow velocity
over a cross section of the channel. Note that the flux unit in
two dimensions is �length�2 / �time� compared to
�length�3 / �time� in the three-dimensional case. Instead of as-
suming cyclic boundary conditions for the noncyclic pore
structures shown in Figs. 2�b�–2�d�, the simulation runs are
stopped and reinitiated whenever the random walker reaches
an open end of the structure.

Once a molecule enters an interfacial surface layer of
width �, the so-called capture range, it can get adsorbed.
Inside of the interfacial layer the particle is assumed to get

adsorbed with the probability Qads per simulation step �which
is taken as time unit�. When adsorbed the particle is assumed
to get desorbed again with the probability Qdes per simulation
step.

In the context of the two-dimensional structures shown in
Fig. 2, “surface” refers to the lines defining the pore bound-
aries. Molecular “orientation vector” hence means a vector in
the drawing plane defined by the polar angle � relative to the

main magnetic field B� 0, which again is assumed to be an
in-plane vector.

B. Evaluation of the correlation function

The Monte Carlo simulations provide the total correlation
function which is evaluated according to

GT�t� = �C�t�� �21�

with

C�t� = �Y2,m��0,�0�Y2,−m��s,�s� if initially and finally adsorbed,

0 otherwise.
 �22�

The angular brackets indicate an ensemble average. “Other-
wise” means that the adsorbate molecule is residing either
initially or finally or initially as well as finally in the bulklike
phase where rotational diffusion leads to a practically imme-
diate loss of correlation �see Sec. 7.1 in Ref. �1��. That is, the
low-frequency relaxation under consideration here is solely
due to molecules that are initially and finally in the adsorbed
state. The angles �0 ,�0 and �s ,�s are the polar coordinates of
the surface orientations relative to the main magnetic field at
positions s=0 at time t=0 and s after a time t, respectively.
The distance s is measured as a curvilinear length on the
surface topology.

All simulations were carried out for m=0, i.e., for the
spherical harmonics Y2,0. The azimuthal angle � conse-
quently does not matter. In Ref. �26�, it was shown that the
choice of the subscript m does not influence the results quali-
tatively. The shortest step time of the molecules is defined by
the simulation cycle time �. For the adsorption and desorp-
tion, rates were assumed to be Qads=0.99�−1 and Qdes
=0.1�−1, respectively �compare the simulations in Ref. �6��.

The exchange loss part of the correlation decay can be
simulated by

Gex�t� = �Cex�t�� �23�

and

Cex�t� = �1 if initially and finally adsorbed,

0 otherwise.
 �24�

The angular brackets indicate an ensemble average again.
Starting from Gex�0�=1, this function decays with a charac-
teristic time constant �ex. In the long-time limit, the equilib-

rium population in the adsorbed phase is approached. Note
that this contribution to the total correlation function is inde-
pendent of the flow velocity.

Dividing GT by the exchange loss function separately
simulated according to Eq. �23� results in the proper RMTD
part of the correlation decay,

Greo =
GT

Gex
. �25�

This is the velocity dependent part of the correlation loss and
consequently reflects hydrodynamic dispersion. Figure 3
shows typical examples of the contributions to the total cor-
relation function as defined above.

IV. APPLICATION TO MODEL PORE SPACES

The “pore spaces” under consideration were a circular
pore �Fig. 2�a��, a chain of randomly oriented, jointed
straight pipe sections with smooth �Fig. 2�b�� or rough �Fig.
2�c�� surfaces, and a pack of ellipsoidal grains �Fig. 2�d��. A
fluid is assumed to percolate through such structures. The
illustration in Fig. 2�e� shows a typical map of the flow ve-
locity magnitude obtained as a numerical solution of the
Navier-Stokes equations applied to the structure shown in
Fig. 2�d�.

A. Orientational structure factor and simulations for a
circular channel

For a two-dimensional circular pore �see Fig. 2�a�� of
channel width w which is negligible relative to the mean
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circle radius R̄= �Rmax+Rmin� /2, i.e., w� R̄, an exact solution
exists according to the formalism presented above. This type
of geometry is characterized by a single wave number k

=k0=1/ R̄ in a certain analogy to other periodic structures
such as the corrugated surface of lipid bilayers in the ripple
phase �9,27�. The orientational structure factor is then a �
function,

S�k� = c0��k − k0� , �26�

where c0 is a constant. Inserting this in Eq. �17� leads to

G�t� = c0e−Ddispk0
2te−ivk0t + c1 = c0e−�ne−i�n + c1, �27�

where n= t /� and Ddisp is the dispersion coefficient in anal-
ogy to the molecular self-diffusion coefficient Dm. Note that
Ddisp=Dm in the static case and Ddisp�Dm, otherwise. The
real time is represented by t expressed in units of the simu-
lation cycle time �. The parameters � and � are given by

� = Ddispk0
2� �28�

and

� = k0v� , �29�

respectively. c1= �Y2,m
2 � is a constant accounting for any finite

residual correlation in the long-time limit �see Eq. �22��. The
spectral density is given as the Fourier transform of Eq. �27�:

I��� =
c0

2�

��

�2 + �� + ���2 . �30�

This function in turn is the basis for the spin-lattice relax-
ation rate given in Eq. �6�.

For the simulations the outer and inner radii of the circu-
lar channel were set as Rmax=105� and Rmin=100�, respec-

tively, so that the condition w� R̄ assumed for the analytical
theory is satisfied. � is the length unit on which the Monte
Carlo simulations are based. The step length of the random
walk was assumed to have the fixed value �=0.5�.

The correlation length of a circular pore can be estimated
in the following way. The orientation correlation function in

a circle of radius R̄ is

�u��0� · u��s�� = cos�s/R̄� , �31�

where u��0� and u��s� are the tangent unit vectors at curvilin-
ear coordinates 0 and s, respectively. The correlation length
is then taken as the curvilinear distance on which this corre-
lation function decays to the value 1/e:

� = R̄ arccos�1/e� � R̄ � 1.194. �32�

For R̄= �Rmax+Rmin� /2 with the above values for Rmax and
Rmin, the correlation length of the circular pore channel under
consideration is �=122.4�. The Péclet number Pe was calcu-
lated on this basis according to Eq. �1� as a measure of the
relative hydrodynamic flow rate.

Figure 3�a� shows results for the correlation functions GT,
Gex, Greo in the absence of flow. When hydrodynamic flow is
turned on, the reorientation correlation function starts to os-
cillate as a consequence of the periodicity of the cyclic pore

�Fig. 4�. The oscillatory behavior corresponds to the factor
exp�−i�n� in Eq. �27�. Attenuation by hydrodynamic disper-
sion �see the factor exp�−�n�� becomes more and more ef-
fective with increasing flow velocity.

The analytical theory that is the real part of Eq. �27� can
be fitted to the results of the Monte Carlo simulations as a
function of the hydrodynamic flux. The parameters are listed
in Table I. Figure 5 shows the parameter � as a function of

FIG. 4. �Color online� Orientation correlation function Greo for
the two-dimensional circular pore model �see inset� resulting from a
Monte Carlo simulation. Different flow velocities, that is, different
Péclet numbers Pe, were assumed. The oscillations in the presence
of flow reflect the periodicity of the structure. Attenuation by hy-
drodynamic dispersion becomes perceptible only at flow velocities
�i.e., Péclet numbers� large enough as expected from the analytical
theory �Eq. �27��. �a� Low flow velocities. The attenuation by hy-
drodynamic dispersion is negligible. �b� High flow velocity com-
pared to the correlation function in the absence of flow. Attenuation
by hydrodynamic dispersion is obvious. �c� Envelopes of the oscil-
latory functions displayed in �a� and �b�. The attenuation with in-
creasing Péclet numbers, i.e., increasing flow velocities, due to hy-
drodynamic dispersion is obvious. From the top to the bottom the
Péclet numbers are 0,39,78,117,157.
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the Péclet number �or the mean flow velocity�. The fitted
data can be represented by a square relationship for the “dis-
persion parameter” �,

� = �0 + b�Pe�2, �33�

where �0 and b are constants.
It is worth noting that the local dispersion coefficient in

the vicinity of the surface exhibits the universal Aris-Taylor
behavior �21�

Ddisp = Dm + �
v2

Dm
, �34�

where � is a constant related to the geometry of the structure.
In a capillary, �=�sls

2 /Dm, where ls is the length scale of the
tube and �s is a factor that depends on the shape of the cross
section �12�.

Taking the values of the parameters � and � fitted to the
simulated correlation functions �see Eq. �27� and Table I�
permits one to calculate the inverse spectral density as a
function of the frequency. The relevant formula is given in
Eq. �30�. The data are plotted in Fig. 6. This essentially rep-
resents the shape of the T1 dispersion curves to be expected
in real experiments.

Figure 7 finally shows a comparison between the correla-
tion functions in the strong- and weak-adsorption limits. In
the weak-adsorption limit, values Qads=0.1�−1 and Qdes
=0.9�−1 were assumed for the adsorption and desorption
rates, respectively. The exchange correlation function Gex�t�
is plotted in the inset. The long-time limit of Gex�t� indicates
equilibrium populations deviating by almost two orders of
magnitude. The pure orientation correlation functions Greo�t�

TABLE I. Values of the parameters in Eq. �27� fitted to Monte
Carlo simulations of the orientation correlation function for a cir-
cular pore �see Fig. 4�.

Péclet number � �

0.00 6.623�10−6 0.000

1.96 6.623�10−6 5.605�10−6

3.92 6.650�10−6 1.100�10−6

9.79 6.65�10−6 2.740�10−5

19.6 6.90�10−6 5.480�10−5

39.2 7.50�10−6 1.095�10−4

78.3 1.06�10−5 2.190�10−4

117 1.55�10−5 3.28�10−4

157 2.30�10−5 4.36�10−4

FIG. 5. �Color online� Dispersion parameter � defined in Eq.
�27� as a function of the Péclet number �or mean velocity� for a
circular channel. The data points were obtained by fitting Eq. �27�
to the simulated correlation functions �see Fig. 4�. The solid line
represents a fit of Eq. �33� to these data points.

FIG. 6. �Color online� Spectral densities calculated with the aid
of Eq. �30� for a circular pore for different fluxes. The pore structure
is represented by the symbol in the lower right corner. The param-
eters � and � were fitted to the simulated correlation functions and
are listed in Table I. The Péclet numbers are from the bottom to the
top �see arrow� 0,4,10,20,157. The inset plot shows the ratio � /�
=k0Ddisp /v as a function of the Péclet number. The minimum is
related to the shift of the intensity functions for the highest Péclet
numbers relative to those for low Péclet numbers �see the curve for
Pe�157 in the main plot�.

FIG. 7. �Color online� Comparison between the simulated ori-
entation correlation functions in the strong- and weak-adsorption
limits in a circular pore. The inset shows the exchange correlation
function Gex�t�. This function does not vary with flow.

EFFECT OF HYDRODYNAMIC FLOW ON LOW-FIELD… PHYSICAL REVIEW E 72, 021602 �2005�

021602-7



are not that different, but the decay is somewhat faster in the
weak-adsorption limit. In the case of weak adsorption the
curves are noisy because the relevant particle ensemble is
reduced due to the faster exchange with the bulklike phase.
That is, there are fewer molecules that are initially and fi-
nally in the adsorbed state.

B. Orientational structure factors and simulations for more
complex model pore-space structures

The circular channel examined above must be considered
as a didactic model revealing the principles of the flow-
relaxation effect. Any more realistic pore-space model struc-
ture is unavoidably more complex and, as concerns typical
porous media, contains random elements. In this sense, two-
dimensional random-walk-shaped pipes with smooth �Fig.
2�b�� or rough �Fig. 2�c�� surfaces, and ellipsoidal-grain
packs �Fig. 2�d�� will be examined in the subsequent para-
graphs as further model pore spaces. In the analytical theory,
the topology of the pore space structures can in principle be
accounted for by assuming appropriate orientational struc-
ture factors �9�.

The random character of the pore spaces to be treated may
be introduced into the analytical treatment by either a Gauss-
ian distribution about a certain average value k0 or an equi-
partition of wave numbers instead of the � function given in
Eq. �26�. The orientational structure factor for a Gaussian
distribution is given by

S�k� =� 2

��2e−�k − k0�2/2�2
, �35�

where � is the standard deviation of S�k�. Replacing this
function in Eq. �17� leads to the following orientational cor-
relation function:

G�t� =
2�

�1 + 2�2Ddispt
e−Ddispk0

2t/�1+2�2Ddispt�

�e−�v�t�2/2�1+2�2Ddispt�e−ik0vt/�1+2�2Ddispt�. �36�

The velocity v refers to the interface layer where the BMSD
process takes place. The dispersion coefficient Ddisp depends
on the flow velocity and the pore geometry. The correlation
function Eq. �36� is characterized by three characteristic time
constants:

�0 = �k0
2Ddisp�−1, �37�

�� = �2�2Ddisp�−1, �38�

�v
Gauss = �v��−1. �39�

Another form of the structure factor to be considered here
is an equipartition of wave numbers in a certain range �9�:

S�k� = � 1

ku − kl
if kl � k � ku,

0 otherwise,
� �40�

where the upper and lower cutoff values are designated by ku
and kl, respectively. Inserting this function in Eq. �17� gives

G�t� =
�3/2

ku − kl

e−v2t/4Ddisp

�Ddispt

erf��Ddisptku� − erf��Ddisptkl� +

e−Ddisptku
2

2��Ddisptku

�1 − cos�kuvt�� −
e−Ddisptkl

2

2��Ddisptkl

�1 − cos�klvt��

+
2

�
e−�Ddisptku	

n=1


e−�n2/4�

n2 + 4Ddisptku
2 fn

u�xu,y� −
2

�
e−�Ddisptkl	

n=1


e−�n2/4�

n2 + 4Ddisptkl
2 fn

l �xl,y� + i
e−Ddisptku

2

2��Ddisptku

sin�kuvt�

− i
e−Ddisptkl

2

2��Ddisptkl

sin�klvt� + i
2

�
e−�Ddisptku	

n=1


e−�n2/4�

n2 + 4Ddisptku
2gn

u�xu,y� − i
2

�
e−�Ddisptkl	

n=1


e−�n2/4�

n2 + 4Ddisptkl
2gn

l �xl,y�� , �41�

where

fn
u,l�xu,l,y� = 2xu,l − 2xu,l cosh�ny�cos�2xu,ly�

+ n sinh�ny�cos�2xu,ly� , �42�

gn
u,l�xu,l,y� = 2xu,l cosh�ny�sin�2xu,ly� + n sinh�ny�cos�2xu,ly� .

�43�

The quantities xu,l and y are defined by �Ddispt�1/2ku,l and
1
2v�t /Ddisp, respectively. The characteristic time constants
are

�u = �ku
2Ddisp�−1, �44�

�l = �kl
2Ddisp�−1, �45�

��k = ���k�2Ddisp�−1, �46�

�v
equip = 4Ddisp/v

2, �47�

where �k=ku−kl.

1. Random-walk-shaped pipe with smooth surfaces

This pore-space structure consists of two-dimensional
straight pipe segments joined in random orientations relative
to each other in a nearest-neighbor angle range −� /2��
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�� /2 �see Fig. 2�b��. The segment length lsegment=60� is
short compared to the total system dimensions considered.
The pipe width was assumed to be w=30�. The step width
was set as �=0.2�. The correlation length was evaluated
numerically from the segment correlation function

�l�segment�0� · l�segment�s��, where l�segment�0� and l�segment�s� are the
segment vectors at curvilinear positions 0 and s, respectively.
The numerical segment correlation function can be described
by an exponential decay plus a constant, that is,

�l�segment�0� · l�segment�s�� � exp�− s/�� + const. �48�

The fitted value of the correlation length is ��1.25lsegment. A
random-walk-shaped pipe was also considered by Saffman
�28� in a study about hydrodynamic dispersion, and was dis-
cussed briefly in Ref. �21�.

The time autocorrelation function GT�t� found with the
simulations is characterized by a two-step decay analogous
to those shown in Fig. 3. The two steps correspond to the
exchange function Gex and the reorientation function Greo.
The latter is also plotted in Fig. 8 for different Péclet num-
bers. These numerically evaluated time correlation functions
Greo�t� in Fig. 8 can be well fitted with the real part of Eq.
�36�, i.e., by assuming a Gaussian structure factor with �
=0.058�−1 and k0=0.053�−1. The fitting parameters are listed
in Table II.

The dispersion coefficient increases with the Péclet num-
ber as in the case of the circular-pore model. The dependence
on the Péclet number can be approximated by �see Fig. 9�

Ddisp � Pe ln�Pe� . �49�

This result reproduces the behavior reported in Refs. �28,21�
where a power law �Pe1.3 was stated for a similar range of
Péclet numbers in porous media. This sort of behavior is
attributed to the so-called boundary-layer dispersion regime
�21,29�, where diffusion transfers material from the solid
walls to faster streamlines.

The characteristic time constants defined in Eqs.
�37�–�39� were derived from fits of Eq. �36� to the simulated
data and are plotted in Fig. 10�a� as a function of the Péclet
number. The parameter �v

Gauss which accounts for the velocity
effect interestingly shows the strongest dependence. The
flow velocity, another parameter in Eq. �36�, is plotted in Fig.
10�b�. As a function of the Péclet number, it grows more
slowly than the Péclet number itself and is in all cases
smaller than the mean velocity f /w. This finding appears to
be plausible since the correlation function always senses the
flow behavior in the vicinity of the walls, where the velocity,
in the laminar regime, is small. Figure 10�a� also shows the
fitted data for �v

equip defined in Eq. �47� for an equipartition of
surface wave numbers. These data were obtained by fitting
Eq. �41� to the numerical correlation functions. The velocity
effect for an equipartition is obviously much stronger than
for a Gaussian distribution of surface wave numbers.

Figure 11 shows the numerical Fourier transforms of the
time correlation functions Eq. �35� according to Eq. �18� for
the random-walk-shaped pipe model with smooth surfaces. If

FIG. 8. �Color online� Reorientation autocorrelation function
Greo in a random-walk-shaped pipe with smooth surfaces �see lower
left corner�. The curve parameter is the Péclet number Pe as a
measure of the relative flow rate. The values are from the top to the
bottom Pe=0.0,1.25,2.50,6.25,12.5,25.0,62.5. The solid lines al-
most perfectly coinciding with the data points represent fits of Eq.
�36� �real part�. The resulting parameters are listed in Table II.

TABLE II. Values of the parameters in Eq. �36� �real part� fitted
to Monte Carlo simulations of the orientation correlation function
for the random-walk-shaped pore-space model with smooth sur-
faces. The wave number and the standard deviation are k0

=0.053/� and �=0.058/�, respectively.

Péclet number v �� /�� Ddisp ��2 /��

0.00 0.00 1.70�10−2

1.25 6.6�10−4 1.70�10−2

2.50 1.29�10−3 1.70�10−2

6.25 3.19�10−3 1.80�10−2

12.5 5.70�10−3 2.00�10−2

25.0 9.20�10−3 2.50�10−2

62.5 1.49�10−2 4.00�10−2

FIG. 9. �Color online� Dispersion coefficient Ddisp as a function
of the Péclet number for the random-walk-shaped pipe model with
smooth surface. The data points represent the values obtained by
fitting Eq. �36� to the simulated correlation functions. The solid
lines represent fits of the laws given in the inset to the data points.
Both laws describe the data points very well.
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the pore channel is assumed to have a diameter w�10−6 m,
and the step time is assumed to be ��10−7 s, the flow-
relaxation effect is expected to become perceptible only be-
low 50 kHz. However, if w is smaller than the above value,
the same effect is predicted to occur at higher frequencies.

2. Random-walk-shaped pipe with rough surfaces

This model structure is the same as before but now
supplemented with rough surfaces �compare Figs. 2�b� and
Fig. 2�c��. That is, a shorter length scale of the surface topol-
ogy is introduced whereas the “superstructure” of the
random-walk-shaped pipe is maintained. The surface rough-
ness was generated by a sequence of interconnected subsec-
tions of length lsub=0.2�� lsegment. The angles relative to the
superstructure were randomly chosen in the range −0.9�
���0.9�.

The additional effect introduced by the rough border can
be identified by simulating the correlation function in a
straight channel without random superstructure as shown in
Fig. 12. The combined effect of the superstructure and the
surface roughness leads to a two-step decay of the orienta-
tion correlation function Greo plotted in Fig. 13. The step at
short times with little influence of the velocity is due to the
surface roughness whereas the superstructure reveals itself as
a strongly velocity dependent decay at long times. The sur-
face topology is directly reflected by the bimodal shape of
the correlation function decay as visualized in Fig. 13.

The simulated data can be described by a combination of
two correlation functions based on Gaussian orientational
structure factors for the short- and long-range topologies. Let
us term these correlation functions Gsr�t� and Glr�t�, respec-
tively. Reorientations by the short- and long-range processes
occur on very different time scales, so that they can be con-

FIG. 10. �Color online� �a� Characteristic time constants defined in Eqs. �37�–�39� as functions of the Péclet number for the random-
walk-shaped pipe model with smooth surface �filled data points�. The open data points represent data of �v

equip for an equipartition of wave
numbers according to Eq. �47�. �b� Flow velocity at the solid liquid interface versus Péclet number for the same pore-space geometry. The
data represent fits of Eq. �36� to the simulated correlation functions. All values are smaller than the mean velocity �v�= f /w. The lines serve
to guide the eye.

FIG. 11. �Color online� Inverse spectral density versus fre-
quency for different Péclet numbers. The data have been evaluated
with Eq. �18� in combination with Eq. �35� for the random-walk-
shaped pipe model. The Péclet numbers are from the bottom to the
top �see arrow� 0.0,2.5,6.25,12.5,25.0. The coordinate axes of the
inset refer to �=10−7 s so that the frequency axis is now given in
hertz. This corresponds to the typical range accessible by the field-
cycling NMR relaxometry technique.

FIG. 12. �Color online� Correlation functions Greo and Gex in a
straight pipe with rough borders �see the illustration in the inset�.
The Monte Carlo simulations were performed for Péclet numbers
Pe=0,2.5,12.5,25.0. The exchange correlation function Gex is not
perceptibly affected by flow. The relatively weak effect on the ori-
entation correlation function Greo is to be compared with that based
on the superstructure with smooth surfaces �see Fig. 8�. The com-
bined effect of surface roughness and superstructure will be dem-
onstrated in Fig. 13. The solid lines represent the fits of Eq. �36�.
With the exception of the static case �Pe=0�, the coincidence is
almost perfect.
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sidered to be stochastically independent. The orientation cor-
relation function can then be expressed by a product accord-
ing to

Greo�t� =
GT�t�
Gex�t�

= Gsr�t�Glr�t� . �50�

The short-range term can be analyzed into

Gsr�t� = gsr�t� + Gsr�� . �51�

The finite quantity Gsr�� reflects the anisotropy of the
RMTD process on the length scale of surface roughness,
whereas gsr�t� represents the proper correlation decay with
gsr��=0. On the time scale on which gsr�t� decays to zero,
the long-range part remains practically constant under the
surface topology conditions considered here, i.e., Glr�t�
�Glr�0�. On this basis, Eq. �50� can be rewritten as

Greo�t� = �gsr�t� + Gsr���Glr�t� � gsr�t�Glr�0� + Gsr��Glr�t�

= csrgsr�t� + clrGlr�t� , �52�

which is approximately a linear combination of the two-time

correlation functions with the constant coefficients csr
�Glr�0� and clr�Gsr��.

Let us define a crossover time �co between the short-range
and long-range decay steps of the correlation function so that
gsr�t��co��0 and Glr�t��co��Glr�0�. Short-time and long-
time limits of the orientation correlation function read then

Greo�t� � csrgsr�t� + clr for t � �co �53�

and

Greo�t� � clrGlr�t� for t � �co, �54�

respectively. The correlation functions in these two limits
may be identified with the correlation functions fitted to the
simulation data for a straight pore with rough surfaces �short-
time limit� and that fitted to the simulation data for a
random-walk-shaped pore �long-time limit�. Figure 13 shows
a typical example of a superposition of these two functions.
The fitting parameters, listed in Table III, show that diffusion
at the level of the roughness is not affected by flow.

3. Ellipsoidal-grain packs

As a further model structure a two-dimensional random
distribution of ellipsoidal grains in a conducting channel was
considered as illustrated in Fig. 2�d�. The porosity was evalu-
ated as p�0.415 with a mean porous size around 1.1 �m.
The correlation length � is taken as half the semimajor axis

FIG. 14. �Color online� Simulated correlation functions Greo and
Gex for the two-dimensional ellipsoidal-grain pack model. The Pé-
clet numbers assumed were Pe=0,1.92,4.73,9.35.

FIG. 13. �Color online� Orientation correlation function Greo in
a random-walk-shaped pipe with rough borders �see the illustration
in the inset�. The Monte Carlo simulations were performed for Pé-
clet numbers Pe=0,2.5,12.5,25.0. The two-step decay reflects the
reorientation effects due to the surface roughness at short times and
due to the superstructure at long times. The data can be perfectly
described by a linear combination of Eqs. �53� and �54�. An ex-
ample is shown by the dotted lines.

TABLE III. Values of the parameters in Eq. �36� �real part� fitted to Monte Carlo simulations of the
orientation correlation function for the random-walk-shaped pore-space model with rough borders. The wave
number and the standard deviation for the superstructure are k0=0.053/� and �=0.058/�, respectively. The
same parameters corresponding to the short length scale of the structure are k0=1.5/� and �=0.84/�,
respectively.

Péclet number vlong �� /�� Ddisp
long ��2 /�� vshort �� /�� Ddisp

short ��2 /��

0.00 0.00 1.00�10−2 0.00 2.60�10−2

2.50 1.10�10−3 1.00�10−2 6.90�10−3 2.60�10−2

12.5 4.50�10−3 1.80�10−2 7.90�10−3 2.40�10−2

25.0 7.70�10−3 2.50�10−2 9.30�10−3 2.40�10−2
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of the ellipses. The velocity field was imported from the
computational fluid dynamics simulation shown in Fig. 2�e�.
The mean velocity �v� is calculated as an average over the
magnitudes of this velocity field. The correlation functions
can be analyzed into two decay steps by exchange �Gex� and
the �flow enhanced� RMTD mechanism �Greo�. Figure 14
shows typical examples.

The Gaussian distribution of the orientational structure
factor may again be assumed as an analytical representation
of the correlation function. The solid lines in Fig. 14 repre-
sent fits of the real part of Eq. �36� to the simulated data. The
fitting parameters are listed in Table IV.

The dispersion coefficient increases with the Péclet num-
ber as shown in Fig. 15�a�. In the Péclet number range 0
�Pe�10 investigated, the effect of molecular Fickian diffu-
sion is comparable to that of convective flow. The data may
be described either by a power law Ddisp� �Pe�1.45 or by a
law Ddisp�Pe ln�Pe� �see the solid lines in Fig. 15�a��. The
velocity values fitted to the simulated data turned out to be
less than the mean velocity as demonstrated in Fig. 15�b�.

The inverse spectral density numerically evaluated from
Eq. �18� in combination with Eq. �35� is plotted in Fig. 16 as
a function of the Péclet number. Assuming the values for the
computer unit length and time according to �=10−6 m and
�=10−7 s, respectively, leads to an expected experimental
window as shown in the inset box of Fig. 16. According to
this, the flow-relaxation effect is expected to show up at
frequencies below 100 kHz.

V. DISCUSSION

The effect of hydrodynamic flow on spin-lattice relaxation
near solid surfaces was treated analytically and with the aid

of Monte Carlo simulations for diverse model situations. Due
to the faster surface displacements an enhancement of the
spin-lattice relaxation rate is expected in a frequency range
where local rotational motions are irrelevant. Experimentally
this range can be probed with the aid of the field-cycling
NMR relaxometry technique �1�. Judged from the “experi-
mental window” suggested by the inset data shown in Figs.
11 and 16, the effect cannot be expected to be very pro-
nounced. Anyway, a demonstration was possible with water
flowing through a Chromolith column as used in high-
pressure liquid chromatography �2� although some obvious
modifications of the pore surface chemistry encountered in
more recent relaxometry experiments with this sort of
sample still need to be explained.

The main difficulty one is facing in experimental studies
of the flow-relaxation effect is that hydrodynamic flow
should be homogeneously distributed in the whole sample in
order to achieve the best efficiency. However, hydrodynamic
flow tends to occur along certain percolation pathways as
demonstrated in the computational fluid dynamics simulation
shown in Fig. 2�e�. Similar flow patterns were measured in

TABLE IV. Values of the parameters in Eq. �36� �real part� fitted
to Monte Carlo simulations of the ellipsoidal-grain pack model. The
wave number and the standard deviation are k0=1.04�106 m−1 and
�=7.0�105 m−1, respectively.

Péclet number v �m/s� Ddisp �m2/s�

0.00 0.00 3.1�10−9

1.92 2.228�10−3 3.7�10−9

4.73 3.479�10−3 4.3�10−9

9.35 6.680�10−3 6.5�10−9

FIG. 15. �Color online� �a� Dispersion coefficients Ddisp versus Péclet number for the ellipsoidal grain model. The lines have been
calculated according to the relationships given in the inset. �b� Flow velocities versus Péclet number in the same model structure. The values
fitted to the simulated reorientation autocorrelation functions Greo based on the real part of Eq. �36� tend to be below the mean velocity �v�.

FIG. 16. �Color online� Inverse spectral density versus fre-
quency for different Péclet numbers in the ellipsoidal-grain model.
The data represent the numerical Fourier transform of the simulated
reorientation autocorrelation function. The frequency scale corre-
sponds to a computer cycle time ��10−7 s. The Péclet numbers are
from the bottom to the top �see arrow� 0,1.92,4.73,9.35. The inset
box indicates the typical window accessible in experiments relative
to that frequency scale.
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percolation model objects with a magnetic resonance micros-
copy technique �30�. The consequence is that most of the
sample volume is not affected by flow of sufficient velocity
or is even subject to stagnant zones. What one measures
under such conditions is an average relaxation rate between
flowing and stagnant material. The flow-relaxation effect is
consequently expected little above the experimental error in-
trinsic to the field-cycling technique.

Mansfield and Issa �31� found in flow mapping experi-
ments in sandstone some stochastic variability of the flow
patterns in repeated experiments. This finding may also be
relevant for the flow-relaxation effect reported here. It ap-
pears that there is some instability of the flow conditions in
microscopic pore spaces. Currently we are therefore pursuing
a different strategy by employing electroosmotic flow prom-
ising more uniform and stable flow velocity distributions.

The flow-relaxation effect can be described theoretically
based on the formalism outlined above. For the orientational
structure factor an equipartition of wave numbers was as-
sumed �see Eq. �40��. The distribution of velocities is also
approached by an equipartition given by

P�v� = � 1

vmax
if 0 � v � vmax,

0 otherwise,
� �55�

where vmax is the upper cutoff value of the velocity distribu-
tion. The effective spectral density thus reads

Iequi��� =
2

vmax�ku − kl�
�

0

vmax �
kl

ku Ddispk
2

�Ddispk
2�2 + �kv + ��2dk dv .

�56�

Combining Eqs. �6� and �56� leads to the final expression for
the spin-lattice relaxation rate under flow conditions. The
lower-cutoff wave number kl is responsible for the crossover
to the low-frequency plateau. The shift of the T1 data to
higher values upon hydrodynamic flow was well reproduced.
The upper- and lower-cutoff values of the wave number, ku
and kl, respectively, indicate the different length scales of the
surface orientation. Interestingly these length scales coincide
with the bimodal pore size distribution by which Chromolith
is specified, that is, “nanometers” corresponding to ku and
“micrometers” corresponding to kl �2�. The low-frequency
spin-lattice relaxation dispersion thus directly reflects fea-
tures of the surface topology in this way.

VI. CONCLUSIONS

Low-field spin-lattice relaxation of polar liquids filled into
a polar, diamagnetic porous medium takes place at the liquid/
solid interfaces via the BMSD and RMTD mechanism. This
is effectively a surface diffusion process. If hydrodynamic
flow is superimposed to molecular diffusion, displacements
along surfaces are accelerated in the sense of hydrodynamic
dispersion.

There are different aspects that can be associated with this
effect. �i� The influence of flow on low-field spin-lattice re-
laxation can be considered as evidence for the BMSD and
RMTD surface relaxation mechanism �3,4�. �ii� Since low-
field spin-lattice relaxation in samples of this sort is gov-
erned by intramolecular spin interactions �3,4�, the relevant
fluctuation of the spin interactions is molecular reorientation.
That is a sort of rotational analog of Taylor-Aris dispersion
�11,12�. �iii� The time scale corresponding to the frequency
range on which the flow-relaxation effect occurs implies that
the relevant molecular displacements perpendicular to the
surface occur on a length scale of a few nanometers only
�32�. This may be regarded as an example of “nanofluidics
near surfaces” �33�. �iv� There is a discussion in the literature
about the relevant interfacial boundary condition �34�.
Judged from the present results, one is dealing with a modi-
fied interfacial slip boundary condition in the sense that mol-
ecules move in a sort of hopping process along the surfaces
�see the illustration in Fig. 1�.

These findings can be considered to be relevant for high-
pressure liquid chromatography and catalysis applications
where surface transport and molecular exchange play a cru-
cial role �35,36�. The adsorption-desorption cycles on sur-
faces underlying the flow-relaxation effect are also of some
theoretical interest, since anomalous or superdiffusive Lévy-
walk-like behavior was predicted for such scenarios �5,37�.
The flow-relaxation effect may open a wide field of potential
studies of nanometric surface effects provided that samples
and experimental setups permitting stable and uniform flow
patterns along curved surface topologies are established.
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